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A. Introduction 
In this paper, we present a comprehensive analysis of the motion and dynamics of a piston-

crankshaft system within an internal combustion engine. Our approach employs advanced 

techniques such as multibody modeling and virtual prototyping to delve into the fundamental 

mechanics of this crucial engine component. The piston-crankshaft system serves a pivotal role 

in converting reciprocating motion to rotary motion, making it essential for understanding and 

optimizing engine performance. 

a. Selection. 

We propose to analyze the motion and dynamics of a piston-crankshaft system in an internal 

combustion engine using multibody modeling and virtual prototyping techniques. This system is 

a fundamental component of engines and plays a crucial role in converting reciprocating motion 

into rotary motion.  

  

b. Why we selected this 

The piston-crankshaft system was selected for analysis due to its wide-ranging applications in 

the automotive, aviation, and industrial sectors. Understanding its motion and dynamics is 

crucial for optimizing engine performance, minimizing vibrations, and enhancing fuel efficiency. 

Moreover, this analysis will serve as a foundational study for understanding complex mechanical 

systems. We believe that addressing key challenges of the piston-crankshaft allows for 

developmental growth for individuals in the field of mechanical engineering. We will be showing 

this using Autolev in explaining how motion and dynamics of the piston play a crucial role in the 

functionality of the motion of the multibody part. 

  

c. Significance 

The significance of this project lies in its potential to improve engine efficiency, reduce 

emissions, and enhance overall system reliability. It is also of personal interest because it 

provides a deep understanding of the interplay between mechanical components and the potential 

to innovate in a vital engineering area. Understanding the efficiency behind crankshafts allows 

for individuals to create a more pivoting system that outlines the importance of motion and 

dynamics within a combustion engine crankshaft. This outline of significance can lead to overall 

improved translations of the crankshaft. 

  

d. Concepts and Methods 

The knowledge acquired from ME 468/MME 568, and GE 205 particularly in kinematics, 

dynamics, and numerical simulation, will be applied to model the piston-crankshaft system 

accurately and derive its equations of motion. These concepts and methods will be instrumental 

in developing a robust simulation. 
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e. Model of the System 

We will be using a model of a two-degree freedom, Cylindrical Joint. This will allow the piston 

to be in translational motion with the rotation of the crankshaft. It will only be a 2D motion. 

There will be 2 particles to consider, one in the piston and one on the connection rod. Seen in the 

Figure below [1]. 

 

 

Figure 1. Slider and Crankshaft Mechanism 

 

So, in figure 1. We will define Newtonian reference frame (N) which would be the I and j axes, 

the B reference frame attached to the rotational part of link (LAB) particle B, frame C is Attached 

to particle C, which is mounted on link (LBC), point A is the center of the crankshaft, and the 

constants are the lengths of the links, LAB and LBC. 

 

B. Theory & Procedure 
This section details the theoretical underpinnings and procedural steps involved in our analysis. 

The motion analysis encompasses predicting forces, velocities, accelerations, and torques at 
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various points in the system. The subsequent presentation of kinematic equations breaks down 

the complex relationships involved in the piston-crankshaft system's motion, providing a detailed 

understanding of its behavior. 

 a. Motion Analysis 

The project will involve modeling the piston-crankshaft system's geometry and constraints to 

analyze its motion. The analysis will include predicting forces, velocities, accelerations, and 

torques at various points within the system. By analyzing these parameters, we can gain insights 

into the engine's performance and durability. 

 

With the frames, particles, points and constants explained in the previous section. We can write 

the kinematic equations as follows. 

 

b. Kinematic Equations:  

 

i. Position Equations: 

 

The piston Instantaneous position can be written as: 

 𝑥 = (𝐿𝐵𝐶 + 𝐿𝐴𝐵) − 𝑠 

 

(1) 

Where: 

• s – position from crank center to piston pin center.  

• LBC –connecting rod length.   

• LAB – crank radius.  

• x – instantaneous piston position from piston pin to TDC (Top Dead Center). 

 

With we can say that: 

 𝑠 = (𝐿𝐵𝐶 𝑐𝑜𝑠 𝑞2 + 𝐿𝐴𝐵 𝑐𝑜𝑠 𝑞1) 
 

(2) 

 𝐿𝐵𝐶 𝑠𝑖𝑛 𝑞2 = 𝐿𝐴𝐵 𝑠𝑖𝑛 𝑞1 
 

(3) 

From equation 3 we can rearrange in angle q2 form: 
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𝑠𝑖𝑛 𝑞2 =

(𝐿𝐴𝐵)

𝐿𝐵𝐶
𝑠𝑖𝑛 𝑞1 

(4) 

 

 

𝑐𝑜𝑠 𝑞2 = √1 − (
𝐿𝐴𝐵

𝐿𝐵𝐶
)^2 𝑠𝑖𝑛2 𝑞1  

 

(5) 

Simplifying further we get that: 

𝑐𝑜𝑠 𝑞2 = 1 −
(
𝐿𝐴𝐵

𝐿𝐵𝐶
)
2

 𝑠𝑖𝑛2 𝑞1

2
  

 

(6) 

Rearranging this we can say that: 

1 − 𝑐𝑜𝑠 𝑞2 =
(
𝐿𝐴𝐵

𝐿𝐵𝐶
)
2

 𝑠𝑖𝑛2 𝑞1

2
  

 

(7) 

Expressing the equation in terms of an angle q1 which is the crank angle. Therefore, Substitute 

equation (2) in equation (1) provides: 

 𝑥 = (𝐿𝐵𝐶 + 𝐿𝐴𝐵) − (𝐿𝐵𝐶 𝑐𝑜𝑠 𝑞2 + 𝐿𝐴𝐵 𝑐𝑜𝑠 𝑞1) (8) 

Simplifying we get: 

 𝑥 = 𝐿𝐵𝐶(1 − 𝑐𝑜𝑠 𝑞2) + 𝐿𝐴𝐵(1 − 𝑐𝑜𝑠 𝑞1) (9) 

Substituting in equation (7) into equation (9): 

 

𝑥 = 𝐿𝐵𝐶 (
(
𝐿𝐴𝐵

𝐿𝐵𝐶
)
2

 𝑠𝑖𝑛2 𝑞1

2
 ) + 𝐿𝐴𝐵(1 − 𝑐𝑜𝑠 𝑞1) 

(10) 

 

 

ii. Velocity Equations: 

 

The velocity of point B (particle C) with respect to point A (center of the crankshaft) can be 

expressed as follows: 



5 

 

 

 𝑉𝐵
⃗⃗⃗⃗ =  𝑤𝐵⃗⃗ ⃗⃗  ⃗  ×  𝑟𝐴

𝐵
⃗⃗⃗⃗  

 

(11) 

       

where: 

• VB is the velocity of point B with respect to point A. 

• ωB is the angular velocity of link AB (crankshaft). 

• rA/B is the position vector from point A to point B. 

The angular velocity ωB is related to the generalized speed U1 by ωB=U1. 

 

Similarly, the velocity of point C with respect to point B can be expressed as:  

 𝑉𝐶
⃗⃗⃗⃗ =  𝑉𝐵

⃗⃗⃗⃗ + 𝑤𝐵𝐶⃗⃗ ⃗⃗ ⃗⃗  ⃗  ×  𝑟𝐶
𝐵

⃗⃗⃗⃗  

 

(12) 

   

Where:  

• VC is the velocity of point B with respect to point A. 

• ωBC is the angular velocity of link AB (crankshaft). 

• rC/B is the position vector from point B to point C. 

 

ωBC is related to the generalized speed U2. 

 

iii. Acceleration Equations: 

 

The acceleration of particle B with respect to point A is given by: 

 𝑎𝐵⃗⃗ ⃗⃗ = −𝜔𝐵
2  𝑟𝐴

𝐵
⃗⃗⃗⃗  

 

(13) 

where aB is the acceleration of point B with respect to the Newtonian frame, and αAB is the 

angular acceleration of link AB. 
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The angular acceleration αAB is related to the generalized acceleration 𝑈1̇ by αAB=𝑈1̇. 

Similarly, the acceleration of point C with respect to point B is given by: 

 𝑎𝑐⃗⃗⃗⃗ = 𝑎𝑏⃗⃗⃗⃗  −  𝜔𝐵𝐶
2   𝑟𝐶

𝐵
⃗⃗⃗⃗ + ∝𝐵𝐶⃗⃗ ⃗⃗ ⃗⃗  ⃗ ×  𝑟𝐶

𝐵
⃗⃗⃗⃗  

 

(14) 

where αBC is related to the generalized acceleration 𝑈2̇. 

 

iv. Transformation Matrices: 

 

With the coordinate transformation between 𝑏1̂, 𝑏2̂, 𝑏3̂ and 𝑎1̂, 𝑎2̂, 𝑎3̂ we can show it with this 

table 1. 

Table 1. Coordinate Transformation from frame B to frame A 

 𝑎1̂ 𝑎2̂ 𝑎3̂ 

𝑏1̂ cos q1  -sin q1 0 

𝑏2̂ sin q1 cos q1 0 

𝑏3̂ 0 0 1 

 

 

The instant velocity of the particle B: 

 

𝑉𝐵
⃗⃗⃗⃗ =  𝜔

𝐿𝐴𝐵

𝐿𝐵𝐶
𝑐𝑜𝑠 𝑞1 

 

(15) 

 

And the acceleration of particle B:  

 
𝑎𝐵⃗⃗ ⃗⃗ = −𝜔𝐵

2  
𝐿𝐴𝐵

𝐿𝐵𝐶
𝑠𝑖𝑛 𝑞1 

 

(16) 

Piston instantaneous velocity of particle C using equation is the first derivative of equation (11) 
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𝑉𝑖𝑛𝑠𝐶
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐿𝐴𝐵𝜔 (

𝐿𝐴𝐵

𝐿𝐵𝐶
 𝑠𝑖𝑛 2 𝑞1

2
+ 𝑠𝑖𝑛 𝑞1) 

(17) 

Piston Instantaneous Acceleration. The instantaneous acceleration of the piston is done the same 

as in instantaneous velocity did. 

 
𝑎𝑖𝑛𝑠𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐿𝐴𝐵𝜔2 (

𝐿𝐴𝐵

𝐿𝐵𝐶
 𝑠𝑖𝑛 2 𝑞1 + 𝑐𝑜𝑠 𝑞1) 

(18) 

Piston Pin Position. The displacement of the piston with respect to crank angle can be derived 

from simple trigonometry. This can then be differentiated to yield velocity and acceleration of 

the piston. The piston pin position is the position from crank center to the piston pin center and 

can be formulated from cosine rule of the trigonometry. 

 𝐿𝐵𝐶 = 𝐿𝐴𝐵
2 + 𝑠2 − 2𝐿𝐴𝐵𝑠 𝑐𝑜𝑠 𝑞1  (19) 

Piston Pin Velocity. Piston pin velocity is the upward velocity from crank center along cylinder 

bore center and can be calculated as the first derivative of equation (19) 

 
𝑉𝐶
⃗⃗⃗⃗ = −𝐿𝐴𝐵 𝑠𝑖𝑛 𝑞1 −

𝐿𝐴𝐵
2 𝑠𝑖𝑛 𝑞1 𝑐𝑜𝑠 𝑞1

√𝐿𝐵𝑆
2 − 𝐿𝐴𝐵

2 𝑠𝑖𝑛2 𝑞1
   

(20) 

Piston Pin Acceleration. Piston pin acceleration is the upward acceleration from crank center 

along cylinder bore center and can be calculated as the second derivative of equation (19) with 

respect to angle q1. 

 
𝑎𝐶⃗⃗⃗⃗ = −𝐿𝐴𝐵 𝑐𝑜𝑠 𝑞1 −

𝐿𝐴𝐵
2 (𝑐𝑜𝑠2 𝑞1 − 𝑠𝑖𝑛2 𝑞1)

√𝐿𝐵𝑆
2 − 𝐿𝐴𝐵

2 𝑠𝑖𝑛2 𝑞1
− 

(𝐿𝐴𝐵
2 )2  (𝑐𝑜𝑠2 𝑞1 𝑠𝑖𝑛2 𝑞1)

√𝐿𝐵𝑆
2 − 𝐿𝐴𝐵

2 𝑠𝑖𝑛2 𝑞1
  

(21) 

   

v. Forces acting on the system equations. 

Gravity Force: The force due to gravity acts vertically downward on the piston. Its magnitude is 

given by 𝐹𝑔 = 𝑚 ∗ 𝑔, where m is the mass of the piston.  

Inertial Force: This force arises due to the acceleration of the mass m on the piston. It can be 

calculated where 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = 𝑚 ∗ 𝑎𝑐 where ac is the linear acceleration of the mass. 

Now, the tangential component of the crank force is given by 𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑚 ∗ 𝐿𝐴𝑏 ∗∝BC
. 

 𝐹𝑛𝑒𝑡 = 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 − 𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙   (22) 

This can be simplified to  
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 0 = −𝑚 ∗ 𝐿𝐴𝐵 ∗ ∝𝐵𝐶   (23) 

 

This equation indicates that the net force in the vertical direction is equal to the negative of the 

tangential force in the crank. This implies that the vertical motion is solely influenced by the 

tangential component of the crank force. 

It's important to note that this analysis assumes ideal conditions and neglects friction and other 

dissipative forces. Real-world systems may require more complex models to account for these 

factors. 

 

C. Simulation Results and Analysis 
The subsequent section of the paper will present and analyze the results obtained from 

the simulation, offering insights into the behavior of the piston-crankshaft system. 

a. AutoLev Coding 
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The MATLAB Code (in Appendix) was output with values: 

INPUT LAB=0.5 m, LBC=0.5 m, G=9.81 m/sec2, M=2 kg 

INPUT Q1=10, Q2=10, U1=0, U2=0, (Q1 and Q2 being rad/s) 

With a time of 16 seconds. 

This creates the final analysis with graphs, Q1 vs time, Q2 vs time, U1 vs time, and U2 vs time. 

This shows the angle of rotation in the Crankshaft arm and the piston. This is shown in Figures 

2-5 below.  

 

Figure 2. Q1 vs Time 
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Figure 3. Q2 vs Time 

 

Figure 4. U1 vs Time 



11 

 

 

Figure 5. U2 vs Time 

 

 

D.  Conclusion 
The integration of Autolev coding in conjunction with MATLAB has proven to be a highly 

successful approach for our comprehensive analysis of the piston-crankshaft system. Through 

meticulous modeling and simulation, we have successfully translated theoretical concepts into 

practical insights, culminating in informative MATLAB graphs that vividly depict the system's 

behavior over time. 

 

The graphical representations of displacement over time provide a clear and dynamic 

visualization of the piston's motion within the crankshaft system. These graphs not only validate 

the accuracy of our Autolev coding but also offer a tangible representation of the complex 

interplay between the piston and crankshaft components. 

 

Furthermore, the MATLAB-generated graphs illustrating velocities and accelerations at various 

points within the system are instrumental in demonstrating the robustness of our analytical 

framework. The nuanced details of these dynamic parameters showcase the intricate dynamics of 

the piston-crankshaft system and affirm the success of our simulation. 

 

By successfully incorporating Autolev coding into the MATLAB environment, we have not only 

achieved a comprehensive understanding of the piston-crankshaft system's behavior but have 
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also demonstrated the efficacy of our approach in generating practical and insightful results. This 

success underscores the potential of our methodology in contributing valuable insights to the 

optimization of internal combustion engines and the broader application of multibody modeling 

and virtual prototyping in the realm of mechanical engineering.  
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Appendix  
function Team3Project2 
SolveOrdinaryDifferentialEquations 
% File  Team3Project2.m  created by Autolev 4.1 on Wed Nov 22 19:05:41 2023 
 
 
%=========================================================================== 
function VAR = ReadUserInput 
global   G LAB LBC Q1pp Q2pp; 
global   Q1 Q2 U1 U2; 
global   Q1p Q2p U1p U2p; 
global   DEGtoRAD RADtoDEG COEF RHS SolutionToAxEqualsB; 
global   TINITIAL TFINAL INTEGSTP PRINTINT ABSERR RELERR; 
 
%-------------------------------+--------------------------+-------------------+-----
------------ 
% Quantity                      | Value                    | Units             | 
Description 
%-------------------------------|--------------------------|-------------------|-----
------------ 
G                               =  9.81;                   % M/SEC^2             
Constant 
LAB                             =  0.5;                    % UNITS               
Constant 
LBC                             =  0.5;                    % UNITS               
Constant 
Q1pp                            =  0.0;                    % UNITS               
Constant 
Q2pp                            =  0.0;                    % UNITS               
Constant 
 
Q1                              =  10;                     % DEG                 
Initial Value 
Q2                              =  10;                     % DEG                 
Initial Value 
U1                              =  0;                      % UNITS               
Initial Value 
U2                              =  0;                      % UNITS               
Initial Value 
 
TINITIAL                        =  0.0;                    % UNITS               
Initial Time 
TFINAL                          =  16;                     % UNITS               
Final Time 

https://doi.org/10.1016/B978-0-12-398512-5.11001-1
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INTEGSTP                        =  0.1;                    % UNITS               
Integration Step 
PRINTINT                        =  1;                      % Positive Integer    
Print-Integer 
ABSERR                          =  1.0E-07;                %                     
Absolute Error 
RELERR                          =  1.0E-07;                %                     
Relative Error 
%-------------------------------+--------------------------+-------------------+-----
------------ 
 
% Unit conversions 
Pi       = 3.141592653589793; 
DEGtoRAD = Pi/180.0; 
RADtoDEG = 180.0/Pi; 
Q1 = Q1*DEGtoRAD; 
Q2 = Q2*DEGtoRAD; 
 
% Reserve space and initialize matrices 
COEF = zeros(2,2); 
RHS = zeros(1,2); 
 
% Evaluate constants 
% Set the initial values of the states 
VAR(1) = Q1; 
VAR(2) = Q2; 
VAR(3) = U1; 
VAR(4) = U2; 
 
 
 
%=========================================================================== 
function OpenOutputFilesAndWriteHeadings 
FileIdentifier = fopen('Team3Project2.1', 'wt');   if( FileIdentifier == -1 ) 
error('Error: unable to open file Team3Project2.1'); end 
fprintf( 1,             '%%       T             Q1             Q2             U1             
U2\n' ); 
fprintf( 1,             '%%     (SEC)          (DEG)          (DEG)         (UNITS)        
(UNITS)\n\n' ); 
fprintf(FileIdentifier, '%% FILE: Team3Project2.1\n%%\n' ); 
fprintf(FileIdentifier, '%%       T             Q1             Q2             U1             
U2\n' ); 
fprintf(FileIdentifier, '%%     (SEC)          (DEG)          (DEG)         (UNITS)        
(UNITS)\n\n' ); 
 
 
 
%=========================================================================== 
% Main driver loop for numerical integration of differential equations 
%=========================================================================== 
function SolveOrdinaryDifferentialEquations 
global   G LAB LBC Q1pp Q2pp; 
global   Q1 Q2 U1 U2; 
global   Q1p Q2p U1p U2p; 
global   DEGtoRAD RADtoDEG COEF RHS SolutionToAxEqualsB; 



15 

 

global   TINITIAL TFINAL INTEGSTP PRINTINT ABSERR RELERR; 
 
OpenOutputFilesAndWriteHeadings 
VAR = ReadUserInput; 
OdeMatlabOptions = odeset( 'RelTol',RELERR, 'AbsTol',ABSERR, 'MaxStep',INTEGSTP ); 
T = TINITIAL; 
PrintCounter = 0; 
mdlDerivatives(T,VAR,0); 
while 1, 
  if( TFINAL>=TINITIAL & T+0.01*INTEGSTP>=TFINAL ) PrintCounter = -1; end 
  if( TFINAL<=TINITIAL & T+0.01*INTEGSTP<=TFINAL ) PrintCounter = -1; end 
  if( PrintCounter <= 0.01 ), 
     mdlOutputs(T,VAR,0); 
     if( PrintCounter == -1 ) break; end 
     PrintCounter = PRINTINT; 
  end 
  [TimeOdeArray,VarOdeArray] = ode45( @mdlDerivatives, [T T+INTEGSTP], VAR, 
OdeMatlabOptions, 0 ); 
  TimeAtEndOfArray = TimeOdeArray( length(TimeOdeArray) ); 
  if( abs(TimeAtEndOfArray - (T+INTEGSTP) ) >= abs(0.001*INTEGSTP) ) 
warning('numerical integration failed'); break;  end 
  T = TimeAtEndOfArray; 
  VAR = VarOdeArray( length(TimeOdeArray), : ); 
  PrintCounter = PrintCounter - 1; 
end 
mdlTerminate(T,VAR,0); 
 
 
 
%=========================================================================== 
% mdlDerivatives: Calculates and returns the derivatives of the continuous states 
%=========================================================================== 
function sys = mdlDerivatives(T,VAR,u) 
global   G LAB LBC Q1pp Q2pp; 
global   Q1 Q2 U1 U2; 
global   Q1p Q2p U1p U2p; 
global   DEGtoRAD RADtoDEG COEF RHS SolutionToAxEqualsB; 
global   TINITIAL TFINAL INTEGSTP PRINTINT ABSERR RELERR; 
 
% Update variables after integration step 
Q1 = VAR(1); 
Q2 = VAR(2); 
U1 = VAR(3); 
U2 = VAR(4); 
Q1p = U1; 
Q2p = U2; 
 
COEF(1,1) = 2*LAB*LBC*cos(Q2) - LAB^2 - LBC^2; 
COEF(1,2) = -LBC*(LBC-LAB*cos(Q2)); 
COEF(2,1) = LAB*cos(Q2) - LBC; 
COEF(2,2) = -LBC; 
RHS(1) = 2*G*LAB*sin(Q1) + 2*LAB*LBC*sin(Q2)*U2*(U1+U2) - G*LBC*sin(Q1-Q2); 
RHS(2) = -G*sin(Q1-Q2) - LAB*sin(Q2)*U1*(U1+U2); 
VARp(1) = COEF(1,1)*COEF(2,2) - COEF(1,2)*COEF(2,1); 
SolutionToAxEqualsB(2) =(COEF(1,1)*RHS(2)-COEF(2,1)*RHS(1))/VARp(1); 
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SolutionToAxEqualsB(1) =(COEF(2,2)*RHS(1)-COEF(1,2)*RHS(2))/VARp(1); 
 
% Update variables after uncoupling equations 
U1p = SolutionToAxEqualsB(1); 
U2p = SolutionToAxEqualsB(2); 
 
% Update derivative array prior to integration step 
VARp(1) = Q1p; 
VARp(2) = Q2p; 
VARp(3) = U1p; 
VARp(4) = U2p; 
 
sys = VARp'; 
 
 
 
%=========================================================================== 
% mdlOutputs: Calculates and return the outputs 
%=========================================================================== 
function Output = mdlOutputs(T,VAR,u) 
global   G LAB LBC Q1pp Q2pp; 
global   Q1 Q2 U1 U2; 
global   Q1p Q2p U1p U2p; 
global   DEGtoRAD RADtoDEG COEF RHS SolutionToAxEqualsB; 
global   TINITIAL TFINAL INTEGSTP PRINTINT ABSERR RELERR; 
 
% Evaluate output quantities 
Output(1)=T;  Output(2)=(Q1*RADtoDEG);  Output(3)=(Q2*RADtoDEG);  Output(4)=U1;  
Output(5)=U2; 
FileIdentifier = fopen('all'); 
WriteOutput( 1,                 Output(1:5) ); 
WriteOutput( FileIdentifier(1), Output(1:5) ); 
 
 
 
%=========================================================================== 
function WriteOutput( fileIdentifier, Output ) 
numberOfOutputQuantities = length( Output ); 
if numberOfOutputQuantities > 0, 
  for i=1:numberOfOutputQuantities, 
    fprintf( fileIdentifier, ' %- 14.6E', Output(i) ); 
  end 
  fprintf( fileIdentifier, '\n' ); 
end 
 
 
 
%=========================================================================== 
% mdlTerminate: Perform end of simulation tasks and set sys=[] 
%=========================================================================== 
function sys = mdlTerminate(T,VAR,u) 
FileIdentifier = fopen('all'); 
fclose( FileIdentifier(1) ); 
fprintf( 1, '\n Output is in the file Team3Project2.1\n' ); 
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fprintf( 1, '\n To load and plot columns 1 and 2 with a solid line and columns 1 and 
3 with a dashed line, enter:\n' ); 
fprintf( 1, '    someName = load( ''Team3Project2.1'' );\n' ); 
fprintf( 1, '    plot( someName(:,1), someName(:,2), ''-'', someName(:,1), 
someName(:,3), ''--'' )\n\n' ); 
sys = []; 
 
 
 
%=========================================================================== 
% Sfunction: System/Simulink function from standard template 
%=========================================================================== 
function [sys,x0,str,ts] = Sfunction(t,x,u,flag) 
switch flag, 
  case 0,  [sys,x0,str,ts] = mdlInitializeSizes;    % Initialization of sys, initial 
state x0, state ordering string str, and sample times ts 
  case 1,  sys = mdlDerivatives(t,x,u);             % Calculate the derivatives of 
continuous states and store them in sys 
  case 2,  sys = mdlUpdate(t,x,u);                  % Update discrete states x(n+1) 
in sys 
  case 3,  sys = mdlOutputs(t,x,u);                 % Calculate outputs in sys 
  case 4,  sys = mdlGetTimeOfNextVarHit(t,x,u);     % Return next sample time for 
variable-step in sys 
  case 9,  sys = mdlTerminate(t,x,u);               % Perform end of simulation tasks 
and set sys=[] 
  otherwise error(['Unhandled flag = ',num2str(flag)]); 
end 
 
 
 
%=========================================================================== 
% mdlInitializeSizes: Return the sizes, initial state VAR, and sample times ts 
%=========================================================================== 
function [sys,VAR,stateOrderingStrings,timeSampling] = mdlInitializeSizes 
sizes = simsizes;             % Call simsizes to create a sizes structure 
sizes.NumContStates  = 4;     % sys(1) is the number of continuous states 
sizes.NumDiscStates  = 0;     % sys(2) is the number of discrete states 
sizes.NumOutputs     = 5;     % sys(3) is the number of outputs 
sizes.NumInputs      = 0;     % sys(4) is the number of inputs 
sizes.DirFeedthrough = 1;     % sys(6) is 1, and allows for the output to be a 
function of the input 
sizes.NumSampleTimes = 1;     % sys(7) is the number of samples times (the number of 
rows in ts) 
sys = simsizes(sizes);        % Convert it to a sizes array 
stateOrderingStrings = []; 
timeSampling         = [0 0]; % m-by-2 matrix containing the sample times 
OpenOutputFilesAndWriteHeadings 
VAR = ReadUserInput 
 

 

 


