

Modeling and Simulation

Project 2

by

Steven Araki

John Scotto Rodriguez

Department of Mechanical Engineering, St. Martin’s University

ME 468: Modeling & Simulation

Dr. Shawn Duan

December 3, 2023

Table of Contents
A. Introduction ... 1

a. Selection. ... 1

b. Why we selected this .. 1

c. Significance ... 1

d. Concepts and Methods .. 1

e. Model of the System ... 2

Figure 1. Slider and Crankshaft Mechanism... 2

B. Theory & Procedure .. 2

a. Motion Analysis .. 3

b. Kinematic Equations: .. 3

i. Position Equations: ... 3

ii. Velocity Equations: ... 4

iii. Acceleration Equations: .. 5

iv. Transformation Matrices: ... 6

v. Forces acting on the system equations. .. 7

C. Simulation Results and Analysis ... 8

a. AutoLev Coding... 8

Figure 2. Q1 vs Time .. 9

Figure 3. Q2 vs Time .. 10

Figure 4. U1 vs Time .. 10

Figure 5. U2 vs Time ...11

D. Conclusion ...11

References ... 13

Appendix ... 13

1

A. Introduction
In this paper, we present a comprehensive analysis of the motion and dynamics of a piston-

crankshaft system within an internal combustion engine. Our approach employs advanced

techniques such as multibody modeling and virtual prototyping to delve into the fundamental

mechanics of this crucial engine component. The piston-crankshaft system serves a pivotal role

in converting reciprocating motion to rotary motion, making it essential for understanding and

optimizing engine performance.

a. Selection.

We propose to analyze the motion and dynamics of a piston-crankshaft system in an internal

combustion engine using multibody modeling and virtual prototyping techniques. This system is

a fundamental component of engines and plays a crucial role in converting reciprocating motion

into rotary motion.

b. Why we selected this

The piston-crankshaft system was selected for analysis due to its wide-ranging applications in

the automotive, aviation, and industrial sectors. Understanding its motion and dynamics is

crucial for optimizing engine performance, minimizing vibrations, and enhancing fuel efficiency.

Moreover, this analysis will serve as a foundational study for understanding complex mechanical

systems. We believe that addressing key challenges of the piston-crankshaft allows for

developmental growth for individuals in the field of mechanical engineering. We will be showing

this using Autolev in explaining how motion and dynamics of the piston play a crucial role in the

functionality of the motion of the multibody part.

c. Significance

The significance of this project lies in its potential to improve engine efficiency, reduce

emissions, and enhance overall system reliability. It is also of personal interest because it

provides a deep understanding of the interplay between mechanical components and the potential

to innovate in a vital engineering area. Understanding the efficiency behind crankshafts allows

for individuals to create a more pivoting system that outlines the importance of motion and

dynamics within a combustion engine crankshaft. This outline of significance can lead to overall

improved translations of the crankshaft.

d. Concepts and Methods

The knowledge acquired from ME 468/MME 568, and GE 205 particularly in kinematics,

dynamics, and numerical simulation, will be applied to model the piston-crankshaft system

accurately and derive its equations of motion. These concepts and methods will be instrumental

in developing a robust simulation.

2

e. Model of the System

We will be using a model of a two-degree freedom, Cylindrical Joint. This will allow the piston

to be in translational motion with the rotation of the crankshaft. It will only be a 2D motion.

There will be 2 particles to consider, one in the piston and one on the connection rod. Seen in the

Figure below [1].

Figure 1. Slider and Crankshaft Mechanism

So, in figure 1. We will define Newtonian reference frame (N) which would be the I and j axes,

the B reference frame attached to the rotational part of link (LAB) particle B, frame C is Attached

to particle C, which is mounted on link (LBC), point A is the center of the crankshaft, and the

constants are the lengths of the links, LAB and LBC.

B. Theory & Procedure
This section details the theoretical underpinnings and procedural steps involved in our analysis.

The motion analysis encompasses predicting forces, velocities, accelerations, and torques at

3

various points in the system. The subsequent presentation of kinematic equations breaks down

the complex relationships involved in the piston-crankshaft system's motion, providing a detailed

understanding of its behavior.

 a. Motion Analysis

The project will involve modeling the piston-crankshaft system's geometry and constraints to

analyze its motion. The analysis will include predicting forces, velocities, accelerations, and

torques at various points within the system. By analyzing these parameters, we can gain insights

into the engine's performance and durability.

With the frames, particles, points and constants explained in the previous section. We can write

the kinematic equations as follows.

b. Kinematic Equations:

i. Position Equations:

The piston Instantaneous position can be written as:

 𝑥 = (𝐿𝐵𝐶 + 𝐿𝐴𝐵) − 𝑠

(1)

Where:

• s – position from crank center to piston pin center.

• LBC –connecting rod length.

• LAB – crank radius.

• x – instantaneous piston position from piston pin to TDC (Top Dead Center).

With we can say that:

 𝑠 = (𝐿𝐵𝐶 𝑐𝑜𝑠 𝑞2 + 𝐿𝐴𝐵 𝑐𝑜𝑠 𝑞1)

(2)

 𝐿𝐵𝐶 𝑠𝑖𝑛 𝑞2 = 𝐿𝐴𝐵 𝑠𝑖𝑛 𝑞1

(3)

From equation 3 we can rearrange in angle q2 form:

4

𝑠𝑖𝑛 𝑞2 =

(𝐿𝐴𝐵)

𝐿𝐵𝐶
𝑠𝑖𝑛 𝑞1

(4)

𝑐𝑜𝑠 𝑞2 = √1 − (
𝐿𝐴𝐵

𝐿𝐵𝐶
)^2 𝑠𝑖𝑛2 𝑞1

(5)

Simplifying further we get that:

𝑐𝑜𝑠 𝑞2 = 1 −
(
𝐿𝐴𝐵

𝐿𝐵𝐶
)
2

 𝑠𝑖𝑛2 𝑞1

2

(6)

Rearranging this we can say that:

1 − 𝑐𝑜𝑠 𝑞2 =
(
𝐿𝐴𝐵

𝐿𝐵𝐶
)
2

 𝑠𝑖𝑛2 𝑞1

2

(7)

Expressing the equation in terms of an angle q1 which is the crank angle. Therefore, Substitute

equation (2) in equation (1) provides:

 𝑥 = (𝐿𝐵𝐶 + 𝐿𝐴𝐵) − (𝐿𝐵𝐶 𝑐𝑜𝑠 𝑞2 + 𝐿𝐴𝐵 𝑐𝑜𝑠 𝑞1) (8)

Simplifying we get:

 𝑥 = 𝐿𝐵𝐶(1 − 𝑐𝑜𝑠 𝑞2) + 𝐿𝐴𝐵(1 − 𝑐𝑜𝑠 𝑞1) (9)

Substituting in equation (7) into equation (9):

𝑥 = 𝐿𝐵𝐶 (
(
𝐿𝐴𝐵

𝐿𝐵𝐶
)
2

 𝑠𝑖𝑛2 𝑞1

2
) + 𝐿𝐴𝐵(1 − 𝑐𝑜𝑠 𝑞1)

(10)

ii. Velocity Equations:

The velocity of point B (particle C) with respect to point A (center of the crankshaft) can be

expressed as follows:

5

 𝑉𝐵
⃗⃗⃗⃗ = 𝑤𝐵⃗⃗ ⃗⃗ ⃗ × 𝑟𝐴

𝐵
⃗⃗⃗⃗

(11)

where:

• VB is the velocity of point B with respect to point A.

• ωB is the angular velocity of link AB (crankshaft).

• rA/B is the position vector from point A to point B.

The angular velocity ωB is related to the generalized speed U1 by ωB=U1.

Similarly, the velocity of point C with respect to point B can be expressed as:

 𝑉𝐶
⃗⃗⃗⃗ = 𝑉𝐵

⃗⃗⃗⃗ + 𝑤𝐵𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑟𝐶
𝐵

⃗⃗⃗⃗

(12)

Where:

• VC is the velocity of point B with respect to point A.

• ωBC is the angular velocity of link AB (crankshaft).

• rC/B is the position vector from point B to point C.

ωBC is related to the generalized speed U2.

iii. Acceleration Equations:

The acceleration of particle B with respect to point A is given by:

 𝑎𝐵⃗⃗ ⃗⃗ = −𝜔𝐵
2 𝑟𝐴

𝐵
⃗⃗⃗⃗

(13)

where aB is the acceleration of point B with respect to the Newtonian frame, and αAB is the

angular acceleration of link AB.

6

The angular acceleration αAB is related to the generalized acceleration 𝑈1̇ by αAB=𝑈1̇.

Similarly, the acceleration of point C with respect to point B is given by:

 𝑎𝑐⃗⃗⃗⃗ = 𝑎𝑏⃗⃗⃗⃗ − 𝜔𝐵𝐶
2 𝑟𝐶

𝐵
⃗⃗⃗⃗ + ∝𝐵𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑟𝐶

𝐵
⃗⃗⃗⃗

(14)

where αBC is related to the generalized acceleration 𝑈2̇.

iv. Transformation Matrices:

With the coordinate transformation between 𝑏1̂, 𝑏2̂, 𝑏3̂ and 𝑎1̂, 𝑎2̂, 𝑎3̂ we can show it with this

table 1.

Table 1. Coordinate Transformation from frame B to frame A

 𝑎1̂ 𝑎2̂ 𝑎3̂

𝑏1̂ cos q1 -sin q1 0

𝑏2̂ sin q1 cos q1 0

𝑏3̂ 0 0 1

The instant velocity of the particle B:

𝑉𝐵
⃗⃗⃗⃗ = 𝜔

𝐿𝐴𝐵

𝐿𝐵𝐶
𝑐𝑜𝑠 𝑞1

(15)

And the acceleration of particle B:

𝑎𝐵⃗⃗ ⃗⃗ = −𝜔𝐵

2
𝐿𝐴𝐵

𝐿𝐵𝐶
𝑠𝑖𝑛 𝑞1

(16)

Piston instantaneous velocity of particle C using equation is the first derivative of equation (11)

7

𝑉𝑖𝑛𝑠𝐶
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝐿𝐴𝐵𝜔 (

𝐿𝐴𝐵

𝐿𝐵𝐶
 𝑠𝑖𝑛 2 𝑞1

2
+ 𝑠𝑖𝑛 𝑞1)

(17)

Piston Instantaneous Acceleration. The instantaneous acceleration of the piston is done the same

as in instantaneous velocity did.

𝑎𝑖𝑛𝑠𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝐿𝐴𝐵𝜔2 (

𝐿𝐴𝐵

𝐿𝐵𝐶
 𝑠𝑖𝑛 2 𝑞1 + 𝑐𝑜𝑠 𝑞1)

(18)

Piston Pin Position. The displacement of the piston with respect to crank angle can be derived

from simple trigonometry. This can then be differentiated to yield velocity and acceleration of

the piston. The piston pin position is the position from crank center to the piston pin center and

can be formulated from cosine rule of the trigonometry.

 𝐿𝐵𝐶 = 𝐿𝐴𝐵
2 + 𝑠2 − 2𝐿𝐴𝐵𝑠 𝑐𝑜𝑠 𝑞1 (19)

Piston Pin Velocity. Piston pin velocity is the upward velocity from crank center along cylinder

bore center and can be calculated as the first derivative of equation (19)

𝑉𝐶
⃗⃗⃗⃗ = −𝐿𝐴𝐵 𝑠𝑖𝑛 𝑞1 −

𝐿𝐴𝐵
2 𝑠𝑖𝑛 𝑞1 𝑐𝑜𝑠 𝑞1

√𝐿𝐵𝑆
2 − 𝐿𝐴𝐵

2 𝑠𝑖𝑛2 𝑞1

(20)

Piston Pin Acceleration. Piston pin acceleration is the upward acceleration from crank center

along cylinder bore center and can be calculated as the second derivative of equation (19) with

respect to angle q1.

𝑎𝐶⃗⃗⃗⃗ = −𝐿𝐴𝐵 𝑐𝑜𝑠 𝑞1 −

𝐿𝐴𝐵
2 (𝑐𝑜𝑠2 𝑞1 − 𝑠𝑖𝑛2 𝑞1)

√𝐿𝐵𝑆
2 − 𝐿𝐴𝐵

2 𝑠𝑖𝑛2 𝑞1
−

(𝐿𝐴𝐵
2)2 (𝑐𝑜𝑠2 𝑞1 𝑠𝑖𝑛2 𝑞1)

√𝐿𝐵𝑆
2 − 𝐿𝐴𝐵

2 𝑠𝑖𝑛2 𝑞1

(21)

v. Forces acting on the system equations.

Gravity Force: The force due to gravity acts vertically downward on the piston. Its magnitude is

given by 𝐹𝑔 = 𝑚 ∗ 𝑔, where m is the mass of the piston.

Inertial Force: This force arises due to the acceleration of the mass m on the piston. It can be

calculated where 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = 𝑚 ∗ 𝑎𝑐 where ac is the linear acceleration of the mass.

Now, the tangential component of the crank force is given by 𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑚 ∗ 𝐿𝐴𝑏 ∗∝BC
.

 𝐹𝑛𝑒𝑡 = 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 − 𝐹𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 (22)

This can be simplified to

8

 0 = −𝑚 ∗ 𝐿𝐴𝐵 ∗ ∝𝐵𝐶 (23)

This equation indicates that the net force in the vertical direction is equal to the negative of the

tangential force in the crank. This implies that the vertical motion is solely influenced by the

tangential component of the crank force.

It's important to note that this analysis assumes ideal conditions and neglects friction and other

dissipative forces. Real-world systems may require more complex models to account for these

factors.

C. Simulation Results and Analysis
The subsequent section of the paper will present and analyze the results obtained from

the simulation, offering insights into the behavior of the piston-crankshaft system.

a. AutoLev Coding

9

The MATLAB Code (in Appendix) was output with values:

INPUT LAB=0.5 m, LBC=0.5 m, G=9.81 m/sec2, M=2 kg

INPUT Q1=10, Q2=10, U1=0, U2=0, (Q1 and Q2 being rad/s)

With a time of 16 seconds.

This creates the final analysis with graphs, Q1 vs time, Q2 vs time, U1 vs time, and U2 vs time.

This shows the angle of rotation in the Crankshaft arm and the piston. This is shown in Figures

2-5 below.

Figure 2. Q1 vs Time

10

Figure 3. Q2 vs Time

Figure 4. U1 vs Time

11

Figure 5. U2 vs Time

D. Conclusion
The integration of Autolev coding in conjunction with MATLAB has proven to be a highly

successful approach for our comprehensive analysis of the piston-crankshaft system. Through

meticulous modeling and simulation, we have successfully translated theoretical concepts into

practical insights, culminating in informative MATLAB graphs that vividly depict the system's

behavior over time.

The graphical representations of displacement over time provide a clear and dynamic

visualization of the piston's motion within the crankshaft system. These graphs not only validate

the accuracy of our Autolev coding but also offer a tangible representation of the complex

interplay between the piston and crankshaft components.

Furthermore, the MATLAB-generated graphs illustrating velocities and accelerations at various

points within the system are instrumental in demonstrating the robustness of our analytical

framework. The nuanced details of these dynamic parameters showcase the intricate dynamics of

the piston-crankshaft system and affirm the success of our simulation.

By successfully incorporating Autolev coding into the MATLAB environment, we have not only

achieved a comprehensive understanding of the piston-crankshaft system's behavior but have

12

also demonstrated the efficacy of our approach in generating practical and insightful results. This

success underscores the potential of our methodology in contributing valuable insights to the

optimization of internal combustion engines and the broader application of multibody modeling

and virtual prototyping in the realm of mechanical engineering.

13

References
[1] Kuang-Hua Chang, Design Theory and Methods Using CAD/CAE, Academic Press, 2015,

Page xvii, ISBN 9780123985125, https://doi.org/10.1016/B978-0-12-398512-5.11001-1.

Appendix
function Team3Project2
SolveOrdinaryDifferentialEquations
% File Team3Project2.m created by Autolev 4.1 on Wed Nov 22 19:05:41 2023

%===
function VAR = ReadUserInput
global G LAB LBC Q1pp Q2pp;
global Q1 Q2 U1 U2;
global Q1p Q2p U1p U2p;
global DEGtoRAD RADtoDEG COEF RHS SolutionToAxEqualsB;
global TINITIAL TFINAL INTEGSTP PRINTINT ABSERR RELERR;

%-------------------------------+--------------------------+-------------------+-----

% Quantity | Value | Units |
Description
%-------------------------------|--------------------------|-------------------|-----

G = 9.81; % M/SEC^2
Constant
LAB = 0.5; % UNITS
Constant
LBC = 0.5; % UNITS
Constant
Q1pp = 0.0; % UNITS
Constant
Q2pp = 0.0; % UNITS
Constant

Q1 = 10; % DEG
Initial Value
Q2 = 10; % DEG
Initial Value
U1 = 0; % UNITS
Initial Value
U2 = 0; % UNITS
Initial Value

TINITIAL = 0.0; % UNITS
Initial Time
TFINAL = 16; % UNITS
Final Time

https://doi.org/10.1016/B978-0-12-398512-5.11001-1

14

INTEGSTP = 0.1; % UNITS
Integration Step
PRINTINT = 1; % Positive Integer
Print-Integer
ABSERR = 1.0E-07; %
Absolute Error
RELERR = 1.0E-07; %
Relative Error
%-------------------------------+--------------------------+-------------------+-----

% Unit conversions
Pi = 3.141592653589793;
DEGtoRAD = Pi/180.0;
RADtoDEG = 180.0/Pi;
Q1 = Q1*DEGtoRAD;
Q2 = Q2*DEGtoRAD;

% Reserve space and initialize matrices
COEF = zeros(2,2);
RHS = zeros(1,2);

% Evaluate constants
% Set the initial values of the states
VAR(1) = Q1;
VAR(2) = Q2;
VAR(3) = U1;
VAR(4) = U2;

%===
function OpenOutputFilesAndWriteHeadings
FileIdentifier = fopen('Team3Project2.1', 'wt'); if(FileIdentifier == -1)
error('Error: unable to open file Team3Project2.1'); end
fprintf(1, '%% T Q1 Q2 U1
U2\n');
fprintf(1, '%% (SEC) (DEG) (DEG) (UNITS)
(UNITS)\n\n');
fprintf(FileIdentifier, '%% FILE: Team3Project2.1\n%%\n');
fprintf(FileIdentifier, '%% T Q1 Q2 U1
U2\n');
fprintf(FileIdentifier, '%% (SEC) (DEG) (DEG) (UNITS)
(UNITS)\n\n');

%===
% Main driver loop for numerical integration of differential equations
%===
function SolveOrdinaryDifferentialEquations
global G LAB LBC Q1pp Q2pp;
global Q1 Q2 U1 U2;
global Q1p Q2p U1p U2p;
global DEGtoRAD RADtoDEG COEF RHS SolutionToAxEqualsB;

15

global TINITIAL TFINAL INTEGSTP PRINTINT ABSERR RELERR;

OpenOutputFilesAndWriteHeadings
VAR = ReadUserInput;
OdeMatlabOptions = odeset('RelTol',RELERR, 'AbsTol',ABSERR, 'MaxStep',INTEGSTP);
T = TINITIAL;
PrintCounter = 0;
mdlDerivatives(T,VAR,0);
while 1,
 if(TFINAL>=TINITIAL & T+0.01*INTEGSTP>=TFINAL) PrintCounter = -1; end
 if(TFINAL<=TINITIAL & T+0.01*INTEGSTP<=TFINAL) PrintCounter = -1; end
 if(PrintCounter <= 0.01),
 mdlOutputs(T,VAR,0);
 if(PrintCounter == -1) break; end
 PrintCounter = PRINTINT;
 end
 [TimeOdeArray,VarOdeArray] = ode45(@mdlDerivatives, [T T+INTEGSTP], VAR,
OdeMatlabOptions, 0);
 TimeAtEndOfArray = TimeOdeArray(length(TimeOdeArray));
 if(abs(TimeAtEndOfArray - (T+INTEGSTP)) >= abs(0.001*INTEGSTP))
warning('numerical integration failed'); break; end
 T = TimeAtEndOfArray;
 VAR = VarOdeArray(length(TimeOdeArray), :);
 PrintCounter = PrintCounter - 1;
end
mdlTerminate(T,VAR,0);

%===
% mdlDerivatives: Calculates and returns the derivatives of the continuous states
%===
function sys = mdlDerivatives(T,VAR,u)
global G LAB LBC Q1pp Q2pp;
global Q1 Q2 U1 U2;
global Q1p Q2p U1p U2p;
global DEGtoRAD RADtoDEG COEF RHS SolutionToAxEqualsB;
global TINITIAL TFINAL INTEGSTP PRINTINT ABSERR RELERR;

% Update variables after integration step
Q1 = VAR(1);
Q2 = VAR(2);
U1 = VAR(3);
U2 = VAR(4);
Q1p = U1;
Q2p = U2;

COEF(1,1) = 2*LAB*LBC*cos(Q2) - LAB^2 - LBC^2;
COEF(1,2) = -LBC*(LBC-LAB*cos(Q2));
COEF(2,1) = LAB*cos(Q2) - LBC;
COEF(2,2) = -LBC;
RHS(1) = 2*G*LAB*sin(Q1) + 2*LAB*LBC*sin(Q2)*U2*(U1+U2) - G*LBC*sin(Q1-Q2);
RHS(2) = -G*sin(Q1-Q2) - LAB*sin(Q2)*U1*(U1+U2);
VARp(1) = COEF(1,1)*COEF(2,2) - COEF(1,2)*COEF(2,1);
SolutionToAxEqualsB(2) =(COEF(1,1)*RHS(2)-COEF(2,1)*RHS(1))/VARp(1);

16

SolutionToAxEqualsB(1) =(COEF(2,2)*RHS(1)-COEF(1,2)*RHS(2))/VARp(1);

% Update variables after uncoupling equations
U1p = SolutionToAxEqualsB(1);
U2p = SolutionToAxEqualsB(2);

% Update derivative array prior to integration step
VARp(1) = Q1p;
VARp(2) = Q2p;
VARp(3) = U1p;
VARp(4) = U2p;

sys = VARp';

%===
% mdlOutputs: Calculates and return the outputs
%===
function Output = mdlOutputs(T,VAR,u)
global G LAB LBC Q1pp Q2pp;
global Q1 Q2 U1 U2;
global Q1p Q2p U1p U2p;
global DEGtoRAD RADtoDEG COEF RHS SolutionToAxEqualsB;
global TINITIAL TFINAL INTEGSTP PRINTINT ABSERR RELERR;

% Evaluate output quantities
Output(1)=T; Output(2)=(Q1*RADtoDEG); Output(3)=(Q2*RADtoDEG); Output(4)=U1;
Output(5)=U2;
FileIdentifier = fopen('all');
WriteOutput(1, Output(1:5));
WriteOutput(FileIdentifier(1), Output(1:5));

%===
function WriteOutput(fileIdentifier, Output)
numberOfOutputQuantities = length(Output);
if numberOfOutputQuantities > 0,
 for i=1:numberOfOutputQuantities,
 fprintf(fileIdentifier, ' %- 14.6E', Output(i));
 end
 fprintf(fileIdentifier, '\n');
end

%===
% mdlTerminate: Perform end of simulation tasks and set sys=[]
%===
function sys = mdlTerminate(T,VAR,u)
FileIdentifier = fopen('all');
fclose(FileIdentifier(1));
fprintf(1, '\n Output is in the file Team3Project2.1\n');

17

fprintf(1, '\n To load and plot columns 1 and 2 with a solid line and columns 1 and
3 with a dashed line, enter:\n');
fprintf(1, ' someName = load(''Team3Project2.1'');\n');
fprintf(1, ' plot(someName(:,1), someName(:,2), ''-'', someName(:,1),
someName(:,3), ''--'')\n\n');
sys = [];

%===
% Sfunction: System/Simulink function from standard template
%===
function [sys,x0,str,ts] = Sfunction(t,x,u,flag)
switch flag,
 case 0, [sys,x0,str,ts] = mdlInitializeSizes; % Initialization of sys, initial
state x0, state ordering string str, and sample times ts
 case 1, sys = mdlDerivatives(t,x,u); % Calculate the derivatives of
continuous states and store them in sys
 case 2, sys = mdlUpdate(t,x,u); % Update discrete states x(n+1)
in sys
 case 3, sys = mdlOutputs(t,x,u); % Calculate outputs in sys
 case 4, sys = mdlGetTimeOfNextVarHit(t,x,u); % Return next sample time for
variable-step in sys
 case 9, sys = mdlTerminate(t,x,u); % Perform end of simulation tasks
and set sys=[]
 otherwise error(['Unhandled flag = ',num2str(flag)]);
end

%===
% mdlInitializeSizes: Return the sizes, initial state VAR, and sample times ts
%===
function [sys,VAR,stateOrderingStrings,timeSampling] = mdlInitializeSizes
sizes = simsizes; % Call simsizes to create a sizes structure
sizes.NumContStates = 4; % sys(1) is the number of continuous states
sizes.NumDiscStates = 0; % sys(2) is the number of discrete states
sizes.NumOutputs = 5; % sys(3) is the number of outputs
sizes.NumInputs = 0; % sys(4) is the number of inputs
sizes.DirFeedthrough = 1; % sys(6) is 1, and allows for the output to be a
function of the input
sizes.NumSampleTimes = 1; % sys(7) is the number of samples times (the number of
rows in ts)
sys = simsizes(sizes); % Convert it to a sizes array
stateOrderingStrings = [];
timeSampling = [0 0]; % m-by-2 matrix containing the sample times
OpenOutputFilesAndWriteHeadings
VAR = ReadUserInput

